Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 895
Filtrar
1.
Methods Mol Biol ; 2791: 35-43, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532090

RESUMO

The study of the localization of secondary metabolites in both plants and the cell cultures on the intravital sections is hampered by the difficulty of obtaining thin, correctly oriented sections. Techniques for fixing tissues in resins allow these difficulties to be overcome. Properly selected tissue fixation techniques allow using different dyes to identify the compound of interest. In addition, some components of tissue fixation can act as fixatives and as a dye for identifying secondary metabolites. For example, osmium tetroxide, which fixes lipids in tissues, stains phenolic compounds black. This paper describes methods for the detection of phenolic compounds in morphogenic callus culture of buckwheat using osmium tetroxide, Toluidine Blue O dye, and ferric chloride as dyes in epoxy resin-embedded cell culture with double fixation of the material and when material fixed in Karnovsky's fixative.


Assuntos
Corantes , Fagopyrum , Compostos Férricos , Tetróxido de Ósmio , Cloretos , Cloreto de Tolônio , Fixadores , Fixação de Tecidos , Técnicas de Cultura de Células , Ferro , Osmio
2.
Sci Rep ; 14(1): 4622, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409219

RESUMO

Testing the hemocompatibility of medical devices after their interaction with blood entails the need to evaluate the activation of blood elements and the degree of their coagulation and adhesion to the device surface. One possible way to achieve this is to use scanning electron microscopy (SEM). The aim was to develop a novel SEM-based method to assess the thrombogenic potential of medical devices and their adhesiveness to blood cells. As a part of this task, also find a convenient procedure of efficient and non-destructive sample fixation for SEM while reducing the use of highly toxic substances and shortening the fixation time. A polymeric surgical mesh was exposed to blood so that blood elements adhered to its surface. Such prepared samples were then chemically fixed for a subsequent SEM measurement; a number of fixation procedures were tested to find the optimal one. The fixation results were evaluated from SEM images, and the degree of blood elements' adhesion was determined from the images using ImageJ software. The best fixation was achieved with the May-Grünwald solution, which is less toxic than chemicals traditionally used. Moreover, manipulation with highly toxic osmium tetroxide can be avoided in the proposed procedure. A convenient methodology for SEM image analysis has been developed too, enabling to quantitatively evaluate the interaction of blood with the surfaces of various medical devices. Our method replaces the subjective assessment of surface coverage with a better-defined procedure, thus offering more precise and reliable results.


Assuntos
Técnicas Histológicas , Tetróxido de Ósmio , Microscopia Eletrônica de Varredura
3.
Clin Toxicol (Phila) ; 61(11): 1004-1005, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37987740

RESUMO

INTRODUCTION: Osmium tetroxide is a strong oxidizing agent. After dermal exposure to osmium tetroxide, skin discoloration and red papules can occur. We describe a patient with skin discoloration due to osmium tetroxide. CASE SUMMARY: A 25-year-old postgraduate student unintentionally exposed his hand to osmium tetroxide while working in a laboratory setting. After immediate washing, he sought medical care due to left middle finger discoloration. He reported no discomfort in the affected area. Thorough water rinsing was continued, and corticosteroid ointment was applied. IMAGES: Our patient developed dark brown pigmentation on the ventral side of the left middle finger. The pigmentation disappeared one week later. CONCLUSION: Osmium tetroxide may induce dark brown skin discoloration.


Assuntos
Tetróxido de Ósmio , Dermatopatias , Adulto , Humanos , Masculino , Tetróxido de Ósmio/efeitos adversos , Dermatopatias/induzido quimicamente
4.
Methods Cell Biol ; 177: 83-99, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37451777

RESUMO

Volume electron microscopy techniques play an important role in plant research from understanding organelles and unicellular forms to developmental studies, environmental effects and microbial interactions with large plant structures, to name a few. Due to large air voids central vacuole, cell wall and waxy cuticle, many plant tissues pose challenges when trying to achieve high quality morphology, metal staining and adequate conductivity for high-resolution volume EM studies. Here, we applied a robust conventional chemical fixation strategy to address the special challenges of plant samples and suitable for, but not limited to, serial block-face and focused ion beam scanning electron microscopy. The chemistry of this protocol was modified from an approach developed for improved and uniform staining of large brain volumes. Briefly, primary fixation was in paraformaldehyde and glutaraldehyde with malachite green followed by secondary fixation with osmium tetroxide, potassium ferrocyanide, thiocarbohydrazide, osmium tetroxide and finally uranyl acetate and lead aspartate staining. Samples were then dehydrated in acetone with a propylene oxide transition and embedded in a hard formulation Quetol 651 resin. The samples were trimmed and mounted with silver epoxy, metal coated and imaged via serial block-face scanning electron microscopy and focal charge compensation for charge suppression. High-contrast plant tobacco and duckweed leaf cellular structures were readily visible including mitochondria, Golgi, endoplasmic reticulum and nuclear envelope membranes, as well as prominent chloroplast thylakoid membranes and individual lamella in grana stacks. This sample preparation protocol serves as a reliable starting point for routine plant volume electron microscopy.


Assuntos
Tetróxido de Ósmio , Microscopia Eletrônica de Volume , Coloração e Rotulagem , Glutaral , Microscopia Eletrônica de Varredura
5.
Microscopy (Oxf) ; 72(6): 515-519, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37148329

RESUMO

Biological nanoparticles, such as bacterial outer membrane vesicles (OMVs), are routinely characterized through transmission electron microscopy (TEM). In this study, we report a novel method to prepare OMVs for TEM imaging. To preserve vesicular shape and structure, we developed a dual fixation protocol involving osmium tetroxide incubation prior to negative staining with uranyl acetate. Combining osmium tetroxide with uranyl acetate resulted in preservation of sub-50 nm vesicles and improved morphological stability, enhancing characterization of lipid-based nanoparticles by TEM.


Assuntos
Corantes , Tetróxido de Ósmio , Microscopia Eletrônica , Membrana Externa Bacteriana , Microscopia Eletrônica de Transmissão , Coloração e Rotulagem , Osmio
6.
Methods Mol Biol ; 2566: 187-203, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152252

RESUMO

Histochemical and fluorescence-based techniques enable the specific identification of myelin by bright-field or fluorescence microscopy. In this chapter, we describe four histological methods for the evaluation of myelin on peripheral nerve tissue sections. The first method combines the Luxol fast blue (LFB) technique with a modified Picrosirius staining contrasted with Harris hematoxylin, called MCOLL. This method simultaneously stains myelin, collagen fibers, and cell nuclei, thus giving an integrated overview of the histology, collagen network, and myelin content of the tissue in paraffin-embedded or cryosectioned samples. Secondly, we describe the osmium tetroxide method, which provides a permanent positive reaction for myelin as well as other lipids present in the tissue. The third method is the immunofluorescence-based detection of myelin proteins that allows to combine information about their expression status with other proteins of interest. Finally, the FluoroMyelin™ stains enable a fast detection of the myelin content that can be easily implemented in immunofluorescence staining panels for cryosectioned tissues. Together, this chapter provides a variety of methods to accurately identify myelin in different experimental approaches.


Assuntos
Bainha de Mielina , Tetróxido de Ósmio , Colágeno/metabolismo , Corantes/análise , Hematoxilina , Lipídeos/análise , Bainha de Mielina/metabolismo , Coloração e Rotulagem
7.
Methods Mol Biol ; 2564: 287-297, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36107349

RESUMO

Postfixation with osmium tetroxide and Epon embedding are essential for the preservation and visualization of subcellular ultrastructures via electron microscopy. These chemical treatments diminish the fluorescent intensity of most fluorescent proteins in cells, creating a problem for the in-resin correlative light-electron microscopy (CLEM) of Epon-embedded mammalian cultured cells. We found that two green and two far-red fluorescent proteins retain their fluorescence after chemical fixation with glutaraldehyde, osmium tetroxide-staining, dehydration, and polymerization of Epon resins. Consequently, we could observe the fluorescence of fluorescent proteins in ultrathin sections of Epon-embedded cells via fluorescence microscopy, investigate ultrastructures of the cells in the same sections via electron microscopy, and correlate the fluorescent image with the electron microscopic image without chemical or physical distortion of the cells. In other words, referred as "in-resin CLEM" of Epon-embedded samples. This technique also improves the Z-axis resolution of fluorescent images. In this chapter, we introduce the detailed protocol for in-resin CLEM of Epon-embedded mammalian cultured cells using these fluorescent proteins.


Assuntos
Tetróxido de Ósmio , Osmio , Animais , Células Cultivadas , Elétrons , Glutaral , Mamíferos , Microscopia Eletrônica
8.
Elife ; 112022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36263931

RESUMO

Electron microscopy of biological tissue has recently seen an unprecedented increase in imaging throughput moving the ultrastructural analysis of large tissue blocks such as whole brains into the realm of the feasible. However, homogeneous, high-quality electron microscopy staining of large biological samples is still a major challenge. To date, assessing the staining quality in electron microscopy requires running a sample through the entire staining protocol end-to-end, which can take weeks or even months for large samples, rendering protocol optimization for such samples to be inefficient. Here, we present an in situ time-lapsed X-ray-assisted staining procedure that opens the 'black box' of electron microscopy staining and allows observation of individual staining steps in real time. Using this novel method, we measured the accumulation of heavy metals in large tissue samples immersed in different staining solutions. We show that the measured accumulation of osmium in fixed tissue obeys empirically a quadratic dependence between the incubation time and sample size. We found that potassium ferrocyanide, a classic reducing agent for osmium tetroxide, clears the tissue after osmium staining and that the tissue expands in osmium tetroxide solution, but shrinks in potassium ferrocyanide reduced osmium solution. X-ray-assisted staining gave access to the in situ staining kinetics and allowed us to develop a diffusion-reaction-advection model that accurately simulates the measured accumulation of osmium in tissue. These are first steps towards in silico staining experiments and simulation-guided optimization of staining protocols for large samples. Hence, X-ray-assisted staining will be a useful tool for the development of reliable staining procedures for large samples such as entire brains of mice, monkeys, or humans.


Assuntos
Tetróxido de Ósmio , Osmio , Humanos , Camundongos , Animais , Raios X , Coloração e Rotulagem , Microscopia Eletrônica
9.
Sci Rep ; 12(1): 17471, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261475

RESUMO

Characterization of brain infarct lesions in rodent models of stroke is crucial to assess stroke pathophysiology and therapy outcome. Until recently, the analysis of brain lesions was performed using two techniques: (1) histological methods, such as TTC (Triphenyltetrazolium chloride), a time-consuming and inaccurate process; or (2) MRI imaging, a faster, 3D imaging method, that comes at a high cost. In the last decade, high-resolution micro-CT for 3D sample analysis turned into a simple, fast, and cheaper solution. Here, we successfully describe the application of brain contrasting agents (Osmium tetroxide and inorganic iodine) for high-resolution micro-CT imaging for fine location and quantification of ischemic lesion and edema in mouse preclinical stroke models. We used the intraluminal transient MCAO (Middle Cerebral Artery Occlusion) mouse stroke model to identify and quantify ischemic lesion and edema, and segment core and penumbra regions at different time points after ischemia, by manual and automatic methods. In the transient-ischemic-attack (TIA) mouse model, we can quantify striatal myelinated fibers degeneration. Of note, whole brain 3D reconstructions allow brain atlas co-registration, to identify the affected brain areas, and correlate them with functional impairment. This methodology proves to be a breakthrough in the field, by providing a precise and detailed assessment of stroke outcomes in preclinical animal studies.


Assuntos
Iodo , Acidente Vascular Cerebral , Animais , Camundongos , Tetróxido de Ósmio , Microtomografia por Raio-X , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Infarto da Artéria Cerebral Média/patologia , Modelos Animais de Doenças
10.
Ultramicroscopy ; 241: 113600, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35988477

RESUMO

Muscle samples are commonly chemically fixed or frozen immediately upon collection for biochemical and morphological analysis. Certain fixatives such as glutaraldehyde and osmium tetroxide are widely used for transmission electron microscopy (TEM) and lead to adequate preservation of muscle ultrastructure, but do not preserve the molecular features of samples. Methacarn is suggested to be a preferable chemical fixative for light microscopy because it maintains immunohistological features of samples. However, the efficacy of methacarn to preserve ultrastructural features as a primary chemical fixative for TEM is currently unclear. Additionally, cryo-preservation of samples for TEM analysis involves freezing processes such as plunge freezing, slam freezing, or high pressure freezing. High pressure freezing is the considered the gold standard but requires costly equipment and may not be a viable option for many labs collecting tissue samples from remote locations. Dimethyl sulfoxide (DMSO) is a commonly used cryoprotectant that may allow for better structural preservation of samples by impairing ice damage that occurs during plunge/snap freezing. We aimed to assess the effectiveness of methacarn as a primary chemical fixative and determine the effect of pre-coating samples with DMSO before plunge/snap freezing tissues to be prepared for TEM. The micrographs of the methcarn-fixed samples indicate a loss of Z-disk integrity, intermyofibrillar space, mitochondria structure, and lipids. Ultimately, methacarn is not a viable primary fixative for tissue sample preparation for TEM. Similarly, liquid nitrogen freezing of samples wrapped in aluminum foil produced non-uniform Z-disk alignments that appeared smeared with swollen mitochondria. DMSO coating before freezing appears to lessen the alterations to contractile and mitochondrial morphological structures. DMSO appears to be useful for preserving the ultrastructure of sarcomeres if samples are covered before freezing.


Assuntos
Dimetil Sulfóxido , Tetróxido de Ósmio , Ácido Acético , Alumínio , Clorofórmio , Criopreservação , Fixadores/farmacologia , Glutaral , Gelo , Metanol , Microscopia Eletrônica de Transmissão , Músculos
11.
Sci Rep ; 12(1): 11130, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778550

RESUMO

Biotin ligases have been developed as proximity biotinylation enzymes for analyses of the interactome. However, there has been no report on the application of proximity labeling for in-resin correlative light-electron microscopy of Epon-embedded cells. In this study, we established a proximity-labeled in-resin CLEM of Epon-embedded cells using miniTurbo, a biotin ligase. Biotinylation by miniTurbo was observed in cells within 10 min following the addition of biotin to the medium. Using fluorophore-conjugated streptavidin, intracellular biotinylated proteins were labeled after fixation of cells with a mixture of paraformaldehyde and glutaraldehyde. Fluorescence of these proteins was resistant to osmium tetroxide staining and was detected in 100-nm ultrathin sections of Epon-embedded cells. Ultrastructures of organelles were preserved well in the same sections. Fluorescence in sections was about 14-fold brighter than that in the sections of Epon-embedded cells expressing mCherry2 and was detectable for 14 days. When mitochondria-localized miniTurbo was expressed in the cells, mitochondria-like fluorescent signals were detected in the sections, and ultrastructures of mitochondria were observed as fluorescence-positive structures in the same sections by scanning electron microscopy. Proximity labeling using miniTurbo led to more stable and brighter fluorescent signals in the ultrathin sections of Epon-embedded cells, resulting in better performance of in-resin CLEM.


Assuntos
Biotina , Tetróxido de Ósmio , Microscopia Eletrônica de Varredura , Organelas/ultraestrutura , Resinas Vegetais , Coloração e Rotulagem
12.
J Histochem Cytochem ; 70(6): 427-436, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35611640

RESUMO

Low-vacuum scanning electron microscopy (LV-SEM) is a powerful tool that allows to observe light microscopic specimens with periodic acid-silver methenamine (PAM) staining at a higher magnification, simply by removing the coverslip. However, it is not suitable for observation of immunohistochemistry (IHC) using 3,3'-diaminobenzidine (DAB) due to insufficient backscattered electron image. Traditional heavy metal enhancement techniques for DAB in IHC, (1) osmium tetroxide and iron, (2) cobalt, (3) methenamine silver (Ag), (4) gold chloride (Gold), and (5) both Ag and Gold (Ag + Gold), were examined by LV-SEM. Tissue specimens from Thy1.1 glomerulonephritis rat kidney stained with α-smooth muscle actin and visualized with DAB were enhanced by each of these enhancement methods. We found, in light microscopic and LV-SEM, that the enhancement with Ag, Gold, or Ag + Gold had better intensity and contrast than others. At a higher magnification, Ag + Gold enhancement showed high intensity and low background, although only Ag or Gold enhancement had nonspecific background. Even after observation by LV-SEM, the quality of specimens was maintained after remounting the coverslip. It was also confirmed that Ag + Gold enhancement could be useful for IHC using clinical human renal biopsy. These findings indicate that Ag + Gold provided an adequate enhancement in IHC for both LM and LV SEM observation.


Assuntos
Ouro , Tetróxido de Ósmio , Animais , Imuno-Histoquímica , Microscopia Eletrônica de Varredura , Ratos , Vácuo
13.
Microscopy (Oxf) ; 71(4): 206-213, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35388424

RESUMO

Cultured Lithospermum erythrorhizon cells were fixed with a new fixation method to visualize the metabolism of shikonin derivatives, the lipophilic naphthoquinone pigments in Boraginaceae. The new fixation method combined glutaraldehyde containing malachite green, imidazole-osmium and p-phenylenediamine treatments, and cells were then observed with a transmission electron microscope. The method prevented the extraction of lipids, including shikonin derivatives, and improved the visualization of subcellular structures, especially the membrane system, when compared with that of conventional fixation. The improved quality of the transmission electron micrographs is because malachite green ionically binds to the plasma membrane, organelles and lipids and acts as a mordant for electron staining with osmium tetroxide. Imidazole promotes the reaction of osmium tetroxide, leading to enhanced electron staining. p-Phenylenediamine reduces osmium tetroxide bound to cellular materials and increases the electron density. This protocol requires only three additional reagents over conventional chemical fixation using glutaraldehyde and osmium tetroxide.


Assuntos
Tetróxido de Ósmio , Células Vegetais , Glutaral , Imidazóis , Lipídeos , Microscopia Eletrônica , Microscopia Eletrônica de Transmissão
14.
Langmuir ; 38(12): 3765-3774, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35302783

RESUMO

We demonstrate a facile method to fabricate a recyclable cell-alignment scaffold using nanogrooves based on sublimable liquid crystal (LC) material. Randomly and uniaxially arranged smectic LC structures are obtained, followed by sublimation and recondensation processes, which directly produce periodic nanogrooves with dimensions of a couple of hundreds of nanometers. After treatment with osmium tetroxide (OsO4), the nanogroove can serve as a scaffold to efficiently induce directed cell growth without causing cytotoxicity, and it can be used repeatedly. Together, various cell types are applied to the nanogroove, proving the scaffold's broad applicability. Depending on the nanotopography of the LC structures, cells exhibit different morphologies and gene expression patterns, compared to cells on standard glass substrates, according to microscopic observation and qPCR. Furthermore, cell sheets can be formed, which consist of oriented cells that can be repeatedly formed and transferred to other substrates, while maintaining its organization. We believe that our cell-aligning scaffold may pave the way for the soft material field to bioengineering, which can involve fundamentals in cell behavior and function, as well as applications for regenerative medicine.


Assuntos
Cristais Líquidos , Nanoestruturas , Cristais Líquidos/química , Nanoestruturas/toxicidade , Tetróxido de Ósmio
15.
Microscopy (Oxf) ; 71(2): 124-131, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35157050

RESUMO

Precise immunolocalization of molecules in relation to ultrastructural features is challenging, especially when the target is small and not frequent enough to be included in tiny ultrathin sections randomly selected for electron microscopy (EM). Glucose transporter 1 (GLUT1) is in charge of transporting glucose across brain capillary endothelial cells (BCECs). Paraformaldehyde-fixed floating sections (50 µm thick) of mouse brain were immunolabeled with anti-GLUT1 antibody and visualized with fluoronanogold. Fluorescent images encompassing the entire hemisphere were tiled to enable selection of GLUT1-positive BCECs suitable for subsequent EM and landmark placement with laser microdissection to guide trimming. Sections were then fixed with glutaraldehyde, gold enhanced to intensify the labeling and fixed with osmium tetroxide to facilitate ultrastructural recognition. Even though a region that contained target BCECs was successfully trimmed in the resin block, it was only after observation of serial ultrathin sections that GLUT1 signals in coated vesicles on the same cross section corresponding to the cross section preidentified by confocal laser microscope. This is the first ultrastructural demonstration of GLUT1 molecules in coated vesicles, which may well explain its functional relevance to transport glucose across BCECs. Successful ultrastructural localization of molecules in relation to well-preserved target structure in native tissue samples, as achieved in this study, will pave the way to understand the functional relevance of molecules and their relation to ultrastructural details.


Assuntos
Encéfalo , Células Endoteliais , Animais , Encéfalo/ultraestrutura , Transportador de Glucose Tipo 1 , Camundongos , Microscopia Eletrônica , Tetróxido de Ósmio
16.
Histochem Cell Biol ; 157(4): 481-489, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34984524

RESUMO

High-pressure freezing followed by freeze-substitution is a valuable method for ultrastructural analyses of resin-embedded biological samples. The visualization of lipid membranes is one of the most critical aspects of any ultrastructural study and can be especially challenging in high-pressure frozen specimens. Historically, osmium tetroxide has been the preferred fixative and staining agent for lipid-containing structures in freeze-substitution solutions. However, osmium tetroxide is not only a rare and expensive material, but also volatile and toxic. Here, we introduce the use of a combination of potassium permanganate, uranyl acetate, and water in acetone as complementing reagents during the freeze-substitution process. This mix imparts an intense en bloc stain to cellular ultrastructure and membranes, which makes poststaining superfluous and is well suited for block-face imaging. Thus, potassium permanganate can effectively replace osmium tetroxide in the freeze-substitution solution without sacrificing the quality of ultrastructural preservation.


Assuntos
Tetróxido de Ósmio , Permanganato de Potássio , Substituição ao Congelamento/métodos , Congelamento , Lipídeos
17.
Sovrem Tekhnologii Med ; 12(4): 13-20, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795988

RESUMO

The aim of the study was to evaluate the efficacy of a novel technique for preparation, staining, and visualization of tissues containing extra-skeletal mineralization areas, all-metal implants or their prototypes for their subsequent examination using scanning electron microscopy in the backscattered electron mode. MATERIALS AND METHODS: After fixation in 10% formalin (24 h), the biomaterial (a titanium nickelide plate with the surrounding tissues after subcutaneous implantation, patented titanium alloy plates with the surrounding tissues after cranioplasty, primary and secondary calcified atherosclerotic plaques) were fixed with 1% osmium tetroxide (12 h) and then stained with 2% aqueous solution of osmium tetroxide (48 h). The samples were further stained with 2% alcoholic uranyl acetate (5 h), dehydrated with isopropanol (5 h) and acetone (1 h), impregnated with a mixture of acetone and epoxy resin Epon (1:1, 6 h) and then embedded into a fresh portion of epoxy resin (24 h), which was followed by polymerization at 60°C. After grinding and polishing, epoxy blocks were counterstained with lead citrate (7 min) and sputter-coated with carbon, then the samples were visualized by scanning electron microscopy in the backscattered electron mode. The elemental composition was studied using X-ray microanalysis. RESULTS: The developed technique allows obtaining high-quality images at five thousand-fold magnifications, provides the possibility to identify the shape and structure of intact metal and mineral inclusions, and to type the surrounding cells, distinguishing mesenchymal and immunocompetent cells by shape and cytoplasmic content. Apart from connective tissue capsule thickness and leukocyte infiltration, this technique makes it possible to estimate the number and area of newly formed small-caliber vessels representing a surrogate marker of inflammation. CONCLUSION: The proposed technique provides the possibility to investigate adequately the structure of samples when their sectioning is impossible or significantly complicated, with image quality remarkably higher than that obtained by light microscopy.


Assuntos
Metais , Tetróxido de Ósmio , Ligas , Microscopia Eletrônica de Varredura , Coloração e Rotulagem
18.
J Microsc ; 283(1): 29-40, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33822371

RESUMO

Imaging the visual systems of bumblebees and other pollinating insects may increase understanding of their dependence on specific habitats and how they will be affected by climate change. Current high-resolution imaging methods are either limited to two dimensions (light- and electron microscopy) or have limited access (synchrotron radiation x-ray tomography). For x-ray imaging, heavy metal stains are often used to increase contrast. Here, we present micron-resolution imaging of compound eyes of buff-tailed bumblebees (Bombus terrestris) using a table-top x-ray nanotomography (nano-CT) system. By propagation-based phase-contrast imaging, the use of stains was avoided and the microanatomy could more accurately be reconstructed than in samples stained with phosphotungstic acid or osmium tetroxide. The findings in the nano-CT images of the compound eye were confirmed by comparisons with light- and transmission electron microscopy of the same sample and finally, comparisons to synchrotron radiation tomography as well as to a commercial micro-CT system were done.


Assuntos
Laboratórios , Tetróxido de Ósmio , Animais , Abelhas , Microscopia de Contraste de Fase/instrumentação , Síncrotrons , Tomografia Computadorizada por Raios X/métodos , Microtomografia por Raio-X/métodos
20.
Microsc Res Tech ; 84(4): 789-795, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33176034

RESUMO

Lobomycosis is a skin infection produced by the fungus Lacazia loboi, which mainly affects some indigenous and afro-descendant populations in Tropical America. We previously reported the comparative effect of osmium tetroxide (OsO4 ) and ruthenium tetroxide (RuO4 ) in the electron microscopy (EM) of other related microorganisms. The objective of this study is to compare the effect of postfixation with OsO4 and RuO4 in the ultrastructure of L. loboi yeasts. Skin biopsies on patients diagnosed with lobomycosis were fixed in glutaraldehyde at 3% and postfixed in the following solutions: (a) 1% OsO4 , (b) 0.2% RuO4 , and (c) OsO4 at 1% followed by RuO4 at 0.2%. They were then processed using the conventional method for EM. Unlike OsO4, the treatment with RuO4 revealed different shades of gray and electron dense bands in the cell wall and other cell components of L. loboi. The most notable finding was the presence of radial filamentous structures around the yeast, which made the image look like the sun. Postfixation with RuO4 revealed ultrastructural details that had not been previously reported for L loboi. The combined use of OsO4 and RuO4 in EM of microorganisms with cell walls can be useful to evaluate the effect of microbicide substances.


Assuntos
Lacazia , Tetróxido de Ósmio , Humanos , Microscopia Eletrônica , Compostos de Rutênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...